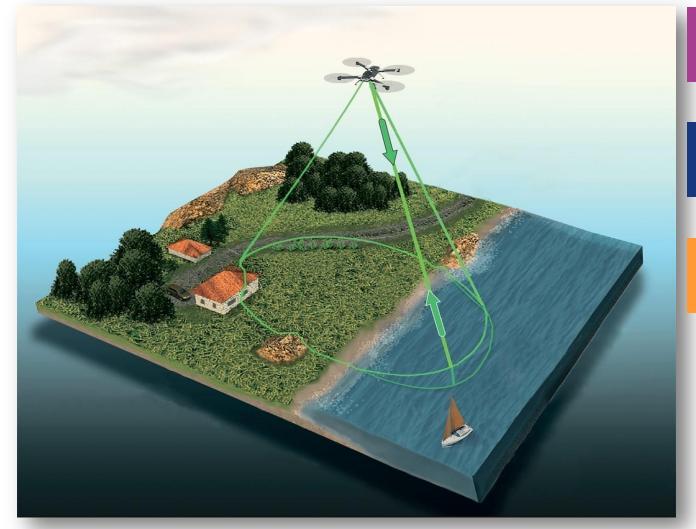


Применение цифровых технологий и инноваций в строительстве автомобильных дорог

Сафонов Юрий Владимирович

Главный инженер ООО «Трансстроймеханизация»

Мост на о. Русский.

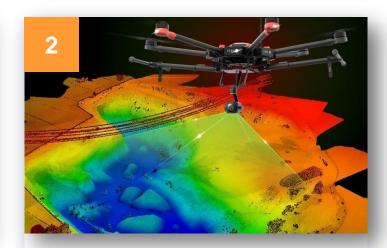


Определение пространственного положения ситуации и рельефа с использованием беспилотных летательных аппаратов возможно следующими методами.

Аэрофотограмметрия

Воздушное лазерное сканирование

Совмещение аэрофотограмметрии и воздушного лазерного сканирования



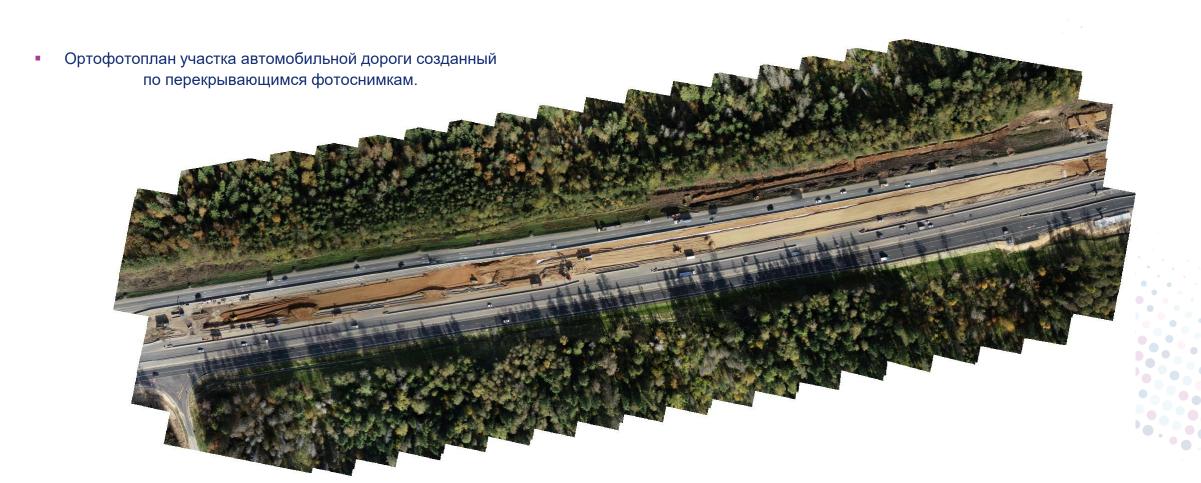
Аэрофотограмметрия — метод определения формы, размеров, положения и иных характеристик объектов по их фотоизображениям, полученных с воздушных носителей съемочной системы.

Воздушное лазерное сканирование — это аэросъемка, выполняемая с помощью дальномера оптического диапазона с целью определения пространственных координат элементов местности путем получения облака точек лазерных отражений.

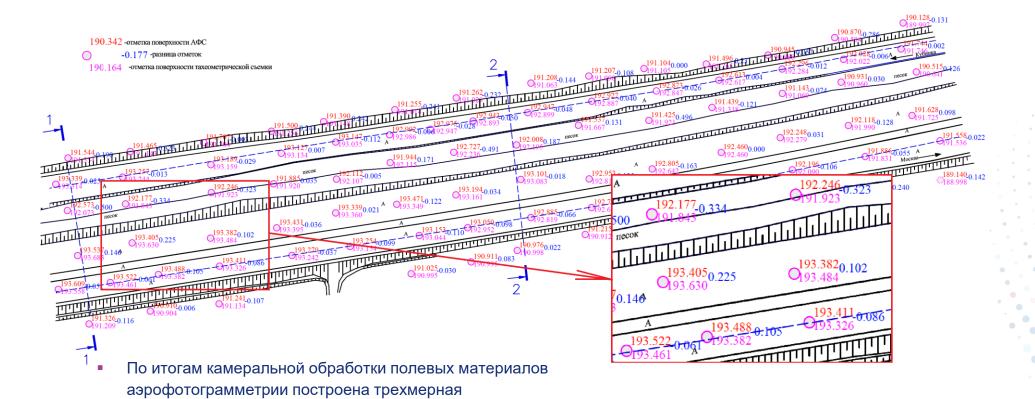
Совмещение указанных методов достигается путем использования дальномера оптического диапазона с интегрированной цифровой фотокамерой.

Совмещение методов приводит к

взаимной компенсации их недостатков.


Для оценки возможности применения современных методов аэрофотограмметрии с применением беспилотных летательных аппаратов при подсчете объемов земляных работ на объекте: «Строительство и реконструкция автомобильной дороги М-1 «Беларусь» в октябре 2020 года в тестовом режиме выполнен сбор данных о пространственном положении конструктивных элементов автомобильной дороги.

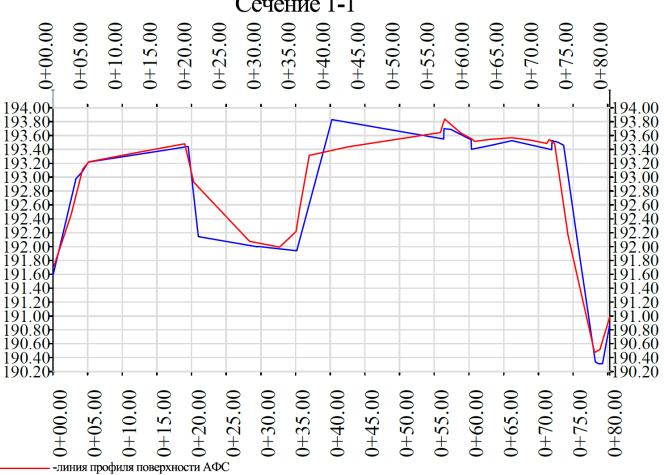
Съемка выполнена на высоте 35, 75 и 110 м относительно поверхности земляного полотна автомобильной дороги.



Для оценки точности полученных данных в момент проведения указанных работ выполнена тахеометрическая съемка характерных контуров ситуации.

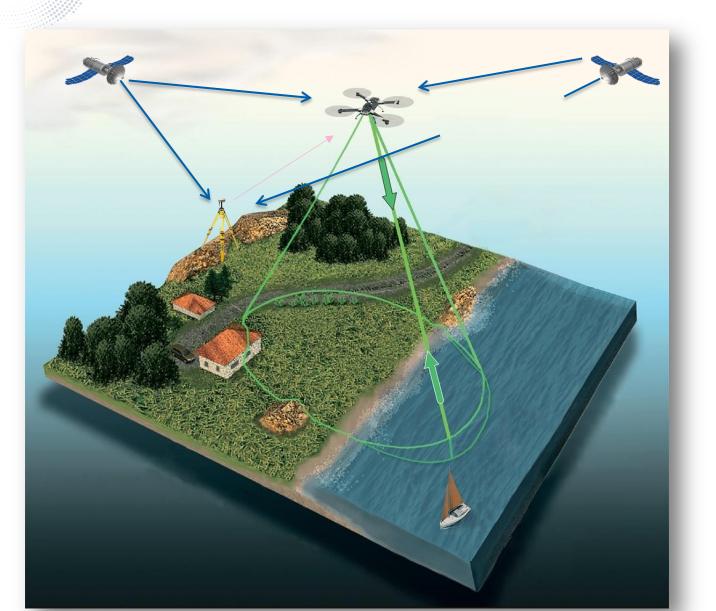
триангуляционная поверхность, отражающая действительное

пространственное положение конструктивных элементов


автомобильной дороги.

Сравнительный анализ материалов аэрофотосъемки и тахеометрии.

-линия профиля поверхности тахеометрической съемки



Принимая во внимание отрицательный результат первого опыта принято решение скорректировать технологию работ.

- Принципиальным отличием принятой схемы организации работ относительно предыдущего эксперимента является передача в режиме реального времени дифференциальных коррекций на борт БПЛА с базовой станции, установленной на пункте геодезической сети с известными плановыми координатами и высотой.
- Таким образом во время полета получено пространственное положение центра каждого снимка с точностью +/- 10 мм в плане и +/- 15 в высотном положении.

Для расчета погрешности определения высотного положения перед выполнением работ на объекте съемки устанавливалось не менее семи контрольных опознавательных знака.

Принимая во внимание показатели точностных характеристик, современные методы геодезических измерений с использованием беспилотных летательных аппаратов эффективно использовать при выполнении следующих задач:

Контроль результатов инженерно-геодезических изысканий.

Исполнительная съемка выполненных работ.

Расчет объемов и инвентаризация инертных материалов на площадках складирования.

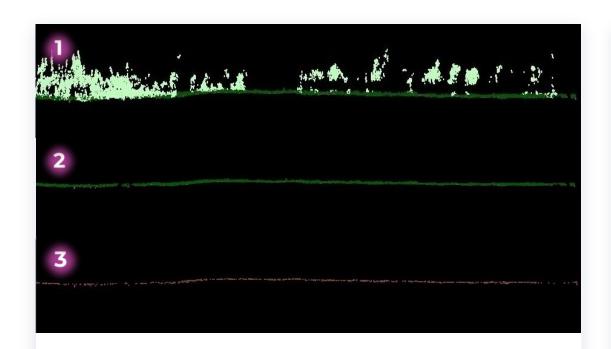
Учет объемов незавершенного производства.

Процесс сбора данных о пространственном положении объектов местности обоими методами одновременно.

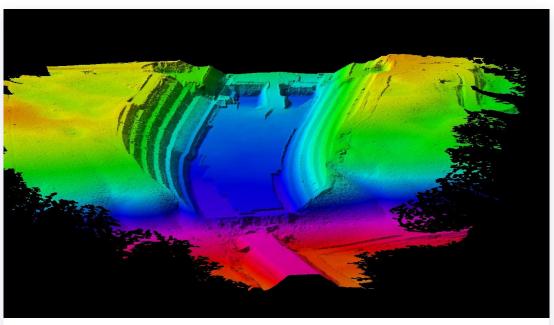
Результат воздушного лазерного сканирования.

Полученный без дополнительной обработки массив точек плотностью до несколько десятков на 1 квадратный метр формирует точечную цифровую модель местности.

Принимая во внимание, что один импульс лазерного дальномера достигает 240 000 сигналов (240 000 лазерных отражений в секунду) детализация съемки позволяет классифицировать растительность по высоте покрова.



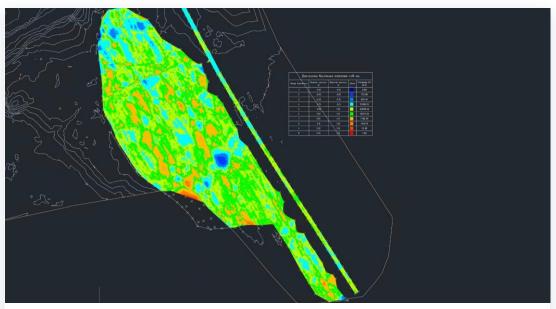
Классификация результатов воздушного лазерного сканирования.



Классификация облака точек лазерного отражения залесенной местности.

- 1. Кустарник, травяной покров, земля.
- 2. Травяной покров, земля.
- 3. Земля.

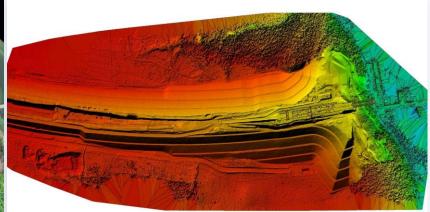
Исключив растительный покров и объекты ситуации в сухом остатке получаем подробную цифровую модель истинного рельефа (ЦМР).



Контроль инженерно-геодезических изысканий стадии проектирования объекта: «Строительство скоростной автомобильной дороги Москва — Санкт-Петербург на участке км 58 — км 684, 3 этап км 149 — км 208».

Сравнение поверхности полученной на стадии проектно-изыскательских работ и поверхности построенной по данным контрольных измерений с использованием БПЛА.

Результат фотограмметрических работ.



Облако точек — набор точек поверхности объектов съемки в необходимых системах координат и высот.

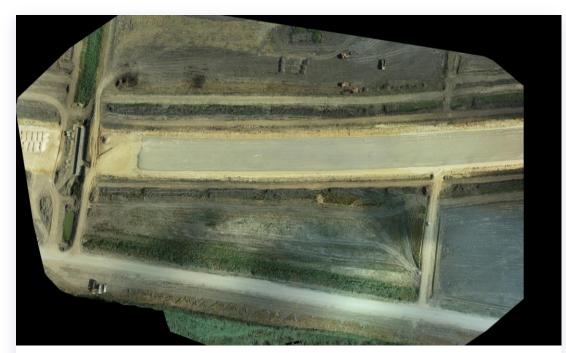
Цифровой ортофотоплан — ортогональное фото представление земной поверхности и объектов на ней с точной привязкой к заданной системе координат.

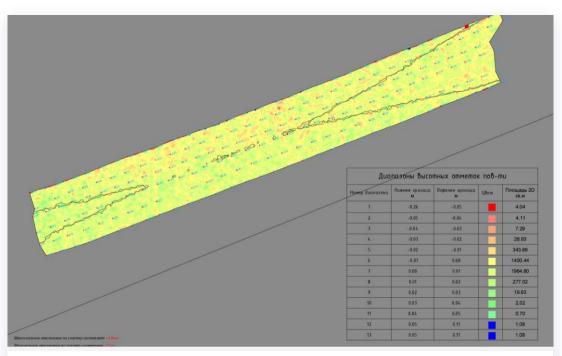
Цифровая модель местности — форма представления инженерно-топографического плана в цифровом векторно-топологическом виде для автоматизированного решения инженерных задач, включающая цифровую модель рельефа и цифровую модель ситуации.

Расчет объемов складирования непригодного грунта на объекте: «М-12 «Строящаяся скоростная автомобильная дорога Москва - Нижний Новгород — Казань», 8 этап км 663 — км 729 с мостовым переходом через р. Волга».

Картограмма земляных масс с графической подложкой в качестве ортофотоплана.

Расчет объема запасов инертных материалов на объекте: М-12 «Строящаяся скоростная автомобильная дорога Москва - Нижний Новгород – Казань» «Строительство с последующей эксплуатацией на платной основе «Нового выхода на МКАД с федеральной автомобильной дороги М-7 «Волга» на участке МКАД – км 60 (обходы г. Балашиха, Ногинск), Московская область». Пусковой комплекс № 1.

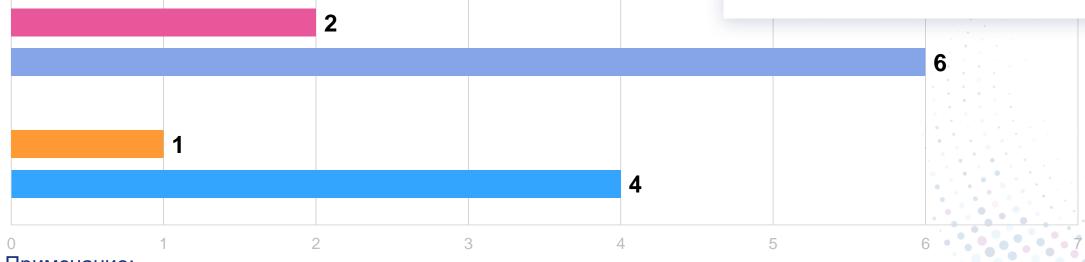

Исполнительный документ с графической подложкой в качестве ортофотоплана.



Исполнительная съемка устройства основания из щебеночнопесчаной смеси на объекте: «Строительство и реконструкция автомобильной дороги А-289

Краснодар — Славянск-на-Кубани — Темрюк — автомобильная дорога A-290 Новороссийск — Керчь».

Сравнение проектной и действительной поверхности.


Оценка эффективности применения беспилотных летательных аппаратов в процессе строительства автомобильных дорог.

Примечание:

- Количество человек занятых тахеометрической съемкой.
- Количество дней потраченных на аэрофотограмметрию.
- Количество дней необходимых для тахеометрической съемки.

БЛАГОДАРЮ ЗА ВНИМАНИЕ